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ABSTRACT

In this paper we present the first steps towards the creation of a
tool which enables artists to create music visualizations using pre-
trained, generative, machine learning models. First, we investigate
the application of network bending, the process of applying trans-
forms within the layers of a generative network, to image gener-
ation diffusion models by utilizing a range of point-wise, tensor-
wise, and morphological operators. We identify a number of visual
effects that result from various operators, including some that are
not easily recreated with standard image editing tools. We find
that this process allows for continuous, fine-grain control of image
generation which can be helpful for creative applications. Next,
we generate music-reactive videos using Stable Diffusion by pass-
ing audio features as parameters to network bending operators. Fi-
nally, we comment on certain transforms which radically shift the
image and the possibilities of learning more about the latent space
of Stable Diffusion based on these transforms.

1. INTRODUCTION

We seek to create an artistic tool which aids in the creation of mu-
sic visualizations: videos in which aspects of the image change in
relation to aspects of the sound. We propose a system that gener-
ates music reactive videos given a sound file and some constraints.
The system, which utilizes generative diffusion models [1], is flex-
ible enough to create a wide variety of visual aesthetics. It can
produce abstract textures and shapes as well as specific objects and
scenes and can move between different visual aesthetics within the
same video. Our hope is that the system creates a relationship be-
tween sound and image that is clear but complex. In this paper,
we present preliminary steps towards these goals and investigate
an implementation that shows promise while acknowledging that
there is still more work to be done to create such a system.

Today, more and more artists work across disciplines and modal-
ities, bridging the gaps between different types of media [2, 3].
Various areas of study and artistic domains have sprung up at these
intersections, such as audio-visual art [4, 5]. From the perspective
of a composer or musician, it may be desirable to bring other art
forms, such as visual art, into one’s practice [6, 7]. Music visual-
izations can complement a piece of music by bringing it into a new
modality.

One avenue for a composer to realize a music visualization is
by collaborating with a visual artist. For example, the composer
and artist Max Cooper, who is known for his music videos, works
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with a different visual artist for each of his videos. While these col-
laborations can be extremely fruitful and fulfilling for both sides,
there can also be a desire for a single person to create both the
sound and the visuals. This may lead to a more unified approach
where the artist, working alone, can more fully realize their cre-
ative idea.

In our opinion, it is important to note that by shutting them-
selves off from collaboration, the lone artist will be passing up
opportunities to have their view of the piece expanded by working
with another artist. It should not be forgotten that collaboration
can be an extremely beneficial working method.

Nonetheless, if there is a desire to have more control over the
creation of both the audio and visuals, then a composer may find
themselves lacking the technical skills to create visual art; it is
difficult for a single person to have expertise in both fields. Of
course, this is not impossible as some individuals, such as artist
Ryoji Ikeda, possess the skills to create both music and visual
art. However by allowing one to create both visuals and music,
it is possible for the artist to have conceptual unity across the two
modalities. Nothing is lost in translation.

In our proposed system, the artist can seek a specific visual
aesthetic which is represented semantically using text or images.
This aesthetic can be applied to the system as constraints on the
generation of images. In order to apply these semantic constraints,
we look to machine learning methods.

In the field of Music Information Retrieval (MIR), there has
been a shift from using hand-crafted features to using machine-
learned features, which has opened up new possibilities in audio
representations [8]. In the same way, we seek to push music visu-
alization past the phase of hand-crafted one-to-one mappings, and
into the area of machine learned mappings and semantics. Work-
ing in the pixel domain, just like working in the waveform domain,
only allows certain operations or effects to be applied to an image
or a sound. Just as one cannot remove the sound of one source
from a complex auditory scene using standard audio methods, one
cannot change the background of an image using standard image
editing methods. In order to achieve such results, different meth-
ods are necessary; we need to work not at the pixel level but at the
semantic level. It is this idea that guides our work.

As we will outline in Section 2, a standard approach to gen-
erating music visualizations is to map the audio features of the
music to the visual features of the video. In this way, any num-
ber of audio features such as amplitude, pitch, noisiness, etc. can
control any visual parameter such as color, brightness, etc. While
this approach is a valid one, we search for a deeper mapping that
is not a one-to-one, one-to-many, or many-to-one mapping from
audio features to visual features. Our hope is that the complex-
ity of this mapping allows for more meaningful and compelling
visualizations.
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In Section 3, we begin this work by utilizing diffusion mod-
els for image generation. For a standard text-to-image diffusion
model, the only control that a user has over the resulting image is
the text prompt and the random seed. The random seed gives no
expressive control to the user since there is no continuity; changing
the seed by 1 has the same effect as changing it by 1,000. There-
fore, the user can only control image generation through the text
prompt. While this gives great semantic control, it does not give
continuous or fine-grain control of the image. Small changes in the
text prompt can lead to large changes in the resulting image. We
seek a level of continuous control that follows the Lipschitz con-
tinuity: a small change in the input should lead to a small change
in the output. For example, a visual effect such as saturation can
be applied to an image, with a parameter giving fine-grain, contin-
uous control. Since sounds are continuous and often have smooth
changes, this is an important aspect of our system.

In order to reach this goal, we propose the application of net-
work bending to be applied to pre-trained diffusion models as a
method of exerting creative control over the output of the model.
Network bending, proposed by [9], allows this control by apply-
ing transformations within the layers of the network during gener-
ation, giving the user the ability to influence output through one or
multiple changing parameters.

As a first step, we investigate using network bending to affect
the generation of images from a text-to-image diffusion model. We
identify various functions that are capable of applying different vi-
sual transformations to images, illustrating that network bending
can be applied to diffusion models. In Section 3.1, we list the dif-
ferent operators we experiment with and identify the visual effects
that result from these operators in Section 4.

In Section 3.2, we seek to use network bending to generate an
audio reactive video. This is done through frame by frame gen-
eration by an image generation model, where the creation of each
frame is influenced by the current audio at the time the frame is
displayed. The generated frames are then stitched together and the
audio that conditioned the generation plays simultaneously. We
generate short videos that take an audio file and text prompt as in-
put. After choosing an operator to be used for network bending
and an audio feature to be passed as a parameter to the operator,
we create music-reactive videos. In the future, the operator and
audio feature would not be hand-picked but machine-crafted, as
we detail in Section 5.

To summarize, our contributions are as follows:

• We show for the first time that network bending can be ap-
plied to diffusion models in order to exert expressive control
over image generation

• We show the wide variety of visual effects that different
transformations have on image output

• We show that videos can effectively be created using im-
age generation models and that music reactive visualiza-
tions can be created using network bending

We provide our code at https://github.com/dzluke/
DAFX2024. A series of videos and supplementary images that we
generated can be viewed at https://dzluke.github.io/
DAFX2024/.

2. STATE OF THE ART

A music visualization is the realization of a sonic and time-based
phenomenon through light, color, shapes, or symbols. There are

many different approaches to music visualization: the use of video
and animation, lights and lasers, created using software or hard-
ware. Visualizations can be static images or dynamic videos. They
can be created in real-time or pre-computed, composed or algorith-
mically generated. In this paper, we will focus on visualizations
which are digital and created using software. We will identify sys-
tems that are generative and can be real-time or offline.

Broadly speaking, visualizations fall into two categories: func-
tional and aesthetic [10]. Common in MIR, the goal of a func-
tional visualization is to provide new information to the viewer,
aid in analysis of a sound, or show the sound in a new light [11].
Aesthetic visualization, on the other hand, is concerned with the
creation of art. In this paper, we seek the aesthetic visualization of
sound; our goal is to create art.

The line between functional and aesthetic visualizations can
be blurred. For example, the spectrogram itself is a type of music
visualization; often thought of as functional but used for artistic
means as well [12]. Martin Wattenberg’s "The Shape of Song" toes
the line between aesthetic and functional, visualizing the form of
different musical pieces by connecting repeated sections in a way
that reveals something new about the piece in an artistic way1.

2.1. Classical Methods

Many methods have been employed to create both functional and
aesthetic visualizations. Often they involve an analysis of a sound
and a representation of that analysis through visual forms. For ex-
ample, in [13] similarities between different sections in a piece of
music can be visualized by calculating the MFCCs of a segment
and computing a similarity measure to all other segments in the
piece. The self-similarity matrix that arises out of this is visual-
ized as an image. In [14] the authors apply PCA to audio features
and then use self-similarity and self-organizing maps to achieve
various visualization methods, some real-time, for the purposes of
music classification.

Within the realm of aesthetic visualization, a common approach
to creating dynamic music visualizations is for the artist to create
a mapping from audio features to visual features [15, 16]. For ex-
ample, the amplitude and spectral centroid could be mapped to the
color and texture, respectively, of some objects on screen. The
BPM could control a rate of movement of these objects, and, using
beat detection, they could move around the screen on the beat. This
mapping could be saved as a preset and different presents could be
used for different types of music. This approach to visualization
can be used for both real-time and pre-computed visualizations.

Common softwares for creating real-time visualizations in-
clude Jitter and TouchDesigner, which allow the creation and link-
ing of modules that perform different computational tasks and are
fast enough to create images on the fly [17]. Many libraries and
plug-ins, such as Vsynth2 for MaxMSP and Scintillator3 for Su-
perCollider, allow artists to create visuals through preset or custom
functions and can take input from any number of audio streams or
sensor-based sources.

2.2. Learning-based Methods

Another approach to creating visualizations is through the use of
machine learning, which can be used to generate images and videos.

1https://www.turbulence.org/Works/song/
2https://www.kevinkripper.com/vsynth
3https://scintillatorsynth.org/
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Generative Adversarial Networks (GANs), which consist of a dis-
criminator network and a generator network, are able to generate
images of a single class [18] and have been employed in various
ways to create music visualizations. In [19], the authors train an
encoder-decoder model to perform music-to-image, and then use
the resulting image to apply style to an input image in a style-
transfer process. A major limitation of this approach is that the
stylization effect does not change over time, but determines a sin-
gle visual style based on the musical input, and is therefore not
suited for dynamic music visualization. Another GAN-based ap-
proach, TräumerAI [20], uses a CNN as a music encoder and trans-
lates music embeddings into a visual embedding space, and then
generates images using StyleGAN2 [21]. This approach is effec-
tive for creating dynamic visualizations, however there does not
appear to be a strong temporal synchronization between audio and
video. In a system that resembles our goal, the authors of [22] ap-
ply network bending and other techniques to StyleGAN2 to create
music reactive videos that change based on various audio features.
The major difference between this system and the one we propose
is that we use diffusion models and hope to create a system that
does not use hand-picked mappings between audio features and
visual characteristics.

While some systems show promise for generalized visualiza-
tion, we avoid using GANs for a number of reasons. First, GANs
are usually specific to one style or object type, like paintings, pup-
pies, or Van Gogh, instead of a generalized image feature space.
The reason for this is that we wish the user to be able to move
between visual aesthetics within one video; for example from an
impressionist painting to a 3D engine rendering to a graphite draw-
ing. Standard GANs are also unable to generate images condi-
tioned on text or image, which gives the user less semantic control
over the generation.

More recently, diffusion models have been employed for im-
age generation. Diffusion models work by training a network to re-
move noise from images, and when pure noise is fed to the model
it can be guided by a text prompt to generate an image of that
prompt [23]. These models have been used for creating music vi-
sualizations in a number of ways. AudioToken [24] is capable of
performing audio-to-image, generating an image that reflects the
source of a sound, such as a picture of a bird when a bird song
is input. MM-Diffusion [25] jointly generates video and audio,
for example generating a video of the ocean and the sounds of
waves lapping at the shore. However, both of these examples are
functional visualizations, aiming to create an image that provides
information about a sound, but we seek aesthetic visualizations.

Generative Disco [26] is the closest example to our goal: a
video that moves through different text prompts is generated, and
the interpolation speed between text prompts is determined by the
amplitude of percussive elements at a given point in time. This
system is built from a modified version of Stable Diffusion capable
of generating music reactive videos4. The main drawbacks are that
the only visual feature that is changing is the interpolation between
prompts and the only audio feature being employed is the ampli-
tude. We seek a system that has a complex relationship between
the timbral elements of the audio and the visual characteristics of
the image, not a one-to-one mapping.

4https://github.com/nateraw/
stable-diffusion-videos

3. METHODOLOGY

In the previous section, we saw how diffusion models have shown
results for image generation and promise for audio visualization.
Therefore, we use Stable Diffusion, an open-source text-to-image
diffusion model, to generate all examples shown in this paper [27].
Stable Diffusion can generate images in multiple ways; the meth-
ods relevant to us are text-to-image and image-to-image. The ar-
chitecture of Stable Diffusion consists of three distinct networks:
a text encoder, a diffusing U-Net, and an image decoder.

Network Bending is applied in the layers of the U-Net, which
is where the diffusion process takes place. At any point in the dif-
fusion process the image being diffused is represented by a com-
pressed encoding which is a tensor of shape (4, 64, 64). These
tensors are then input to an operator and the transformed output
is fed to the next layer. By applying network bending, we enable
parameterized control of the output image, which is not possible
otherwise.

There are four parameters that define an individual application
of network bending:

1. Layer: the operator can be applied before or after any layer
of the network

2. Operator: can be a point-wise, tensor-wise, or morphologi-
cal transformation

3. Parameter: most operators take a parameter as input, such
as the scalar to multiply by or the angle to rotate by

4. Feature: the operator can be applied to all elements of the
latent tensor, a single dimension of the tensor, or a random
selection of its features

Each of these parameters can have an effect on the resulting image
[9].

3.1. Experiments

In order to test the different parameters that can affect network
bending, we first generate images. Each image has one transform
applied at one layer. Unless otherwise noted, the point-wise func-
tions are applied to every element of the latent tensor.

All images are generated using pre-trained Stable Diffusion
v15 with the v1.4 checkpoint6. We use the DDIM sampler with the
default setting of 50 sampling steps and the seed set to 46. Many
of the transformations we apply are taken from [9].

3.1.1. Point-wise Operations

We apply numerous point-wise operators which transform each el-
ement of the latent tensor and select four operators that lead to
meaningful visual change in the resulting image. For each func-
tion, the input x is one element of the latent tensor, and r is a
parameter of the given operator.

1. Addition of a scalar

f(x) = x+ r (1)

2. Multiplication by a scalar

f(x) = x · r (2)
5https://github.com/CompVis/stable-diffusion
6https://huggingface.co/CompVis/

stable-diffusion-v-1-4-original
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3. Hard threshold

f(x) =

{
1 if x ≥ r

0 otherwise
(3)

4. Inversion

f(x) =
1

r
− x (4)

3.1.2. Tensor Operations

Another type of transformation we experiment with are tensor op-
erations, in which an operator tensor is contracted with the latent
tensor, applying an operation in the same way as a matrix multi-
plication would. These operations can be thought of as shifting the
latent tensor to a new location in the feature space. The two tensor
operations we apply are rotation and reflection.

Rotation is applied by contracting a rotation matrix with the
latent tensor. We experiment with the following 4x4 matrices:

R1 =

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1



R2 =

 cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1



R3 =

 cos θ 0 0 sin θ
0 1 0 0
0 0 1 0

− sin θ 0 0 cos θ



R4 =

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1


Reflection is applied through four different 4x4 reflection ma-

trices, in which each one reflects across one dimension. A reflec-
tion matrix is the 4x4 identity matrix with one of the elements on
the diagonal set to −1.

3.1.3. Morphological Transformations

Finally, we employ two morphological transforms, erosion and di-
lation, as found in [9]. These are applied to the latent tensor, treat-
ing it as a 4-channel image. The transformations are implemented
using the Kornia library [28].

Overall these transformations did not lead to as meaningful
results as achieved in [9], however we found that normalizing the
tensor after applying the transformation led to more promising re-
sults. The normalization is done by subtracting the mean from
each element, but applied to specific dimensions. For example, if
dimension 1 is normalized, then the mean of each row is subtracted
from each element in that row.

3.2. Audio-to-Video

After investigating the visual effects that result from different trans-
formations, we use Stable Diffusion to generate videos in two
distinct ways: using text-to-image with batched noise and using
image-to-image with the previous frame as input.

The first method for creating videos uses standard text-to-image
generation but changes the initial noise that is input to the sys-
tem [29]. The initial noise is generated in the following way: first
a standard normal distribution is sampled to create a two tensors
of noise, which we call A and B. Then, to generate frame i out
of total of k frames, the initial noise passed to the model equals
A ∗ sin 2πi

k
+ B ∗ cos 2πi

k
. When generating videos with text-to-

image, the user supplies a single text prompt or two text prompts to
interpolate between. If two prompts are given, the video will start
at the first prompt and end at the second prompt. This image in-
terpolation is achieved through linearly interpolating between the
text encodings of the two prompts.

The second method uses image-to-image to create videos. Image-
to-image is a process in which the input to the diffusion U-Net is
a text prompt, an initialization image, and a "strength" parameter.
The diffusion process starts from the initialization image, which
has had noise added to it [27]. The amount of noise added is in
relation to the strength parameter: a value of 0 means no noise is
added and the resulting image will be extremely similar to the in-
put and a value of 1 means the initialization image will be turned
into complete noise and have no effect on the resulting image.

To generate videos using image-to-image, the user must pro-
vide either an initialization image or a text prompt. The first frame
of the video is either the initialization image or the image gener-
ated from passing the text prompt to text-to-image. The generation
of each subsequent frame is conditioned on the previous frame, us-
ing image-to-image, and with an empty string as the text prompt.

For both methods, we achieve audio-reactivity in the video
by applying network bending during the generation of each frame
with a user defined operator and audio feature. For a given frame,
there is a 50 millisecond window of audio that will play while that
frame is shown. The chosen audio feature is calculated for this
specific window of audio and is then passed as a parameter to the
chosen operator. Usually, the value must be scaled to a different
range, as the range of values that give meaningful results for a
given operator is not necessarily the same range of the audio fea-
ture. We experiment with different audio features including RMS,
spectral shape (centroid, spread, skewness, kurtosis), and spectral
flux [30].

For example, we generate a video7 using text-to-image with
solo piano as audio input, the prompt "3D mesh geometry," and
apply the rotation R1 at layer 40 with the RMS of the audio being
passed as the angle of rotation. The RMS is scaled to the range
0 to 2π before being passed to the operator. On each note onset
from the piano, the image responds through shifting colors which
emerge from the black and white mesh. These visual changes fol-
low the amplitude envelope of the piano, with a strong shift in
color at the attack and a decay to the original image with the pi-
ano. When the piano is quiet or silent, the black and white mesh
continues to change as a result of the initialization noise that is fed
to the generation.

7The video can be viewed at https://dzluke.github.io/
DAFX2024/
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(a) No operator applied (b) Add scalar, r = 1, layer
40

(c) Add scalar, r = 1, layer
0, random selection of 5% of

the features

(d) Multiply scalar, r = 10,
layer 49

(e) Hard threshold, r = 0.1,
layer 49

(f) Inversion, r = 1000,
layer 0

(g) Inversion, r = 1000,
layer 3

(h) Inversion, r = 1000,
layer 6

(i) Inversion, r = 1000,
layer 9

(j) Inversion, r = 1000,
layer 49

Figure 1: Image generations using the prompt "a floating orb" with various point-wise operators applied

(a) No operator applied (b) θ = 0.25π (c) θ = 0.5π (d) θ = 0.75π

(e) θ = π (f) θ = 1.25π (g) θ = 1.5π (h) θ = 1.75π

Figure 2: Image generations using the prompt "a gorgeous landscape" with R1 applied at layer 20 with changing angle
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(a) "a photo of a crane" (b) "bass" (c) "cricket" (d) "a match"

(e) θ = 0.5π (f) θ = 0.75π (g) θ = 0.75π (h) θ = 1.25π

Figure 3: Examples of semantic shift. The top image is generated with no transformation applied. The bottom image is the same prompt
but with R1 applied at layer 0

4. DISCUSSION

In order to create music-reactive videos, we need to identify the
visual effect that each transformation has on the image. We find
that various operators are capable of a number of different effects.
A green color filter can be achieved through adding a scalar (Fig-
ure 1b), and a saturation effect is achieved through multiplication
by a scalar (Figure 1d). These are standard visual effects that are
achievable with media editing software. However, other trans-
forms lead to results that are more complex and not accessible
through standard methods. For example, adding a scalar to only
5% of the features can change only the background color of the
image (Figure 1c) and applying a hard threshold before the last
layer creates a stained glass effect (Figure 1e).

The result of applying inversion, as shown in Figures 1f - 1j,
leads to a shift in the image which is larger than a filter effect. We
call this a "scene change": a transformation in which coherency
is maintained but a significant shift in the image’s contents or
style has occurred. As we see in Figure 1f, applying inversion
before the first layer places the orb in a background of ocean wa-
ter while changing the size, location, color, and texture of the orb.
We find that multiple transformations are capable of creating scene
changes, as can be seen in Figure 4.

As seen in Figure 2, applying rotations as tensor-wise opera-
tions cycles the image through various color filters. The range of
possible colors is determined by the rotation matrix and the color
change is a result of the angle of rotation. Interestingly, as the an-
gle increases from 0 to 2π in R1, the color filter moves along the
color spectrum: yellow, green, blue, indigo, violet, red. While the
effect may be a simple color filter, it sometimes does more than
this: in Figure 2f, a blue filter is applied to the image and the cre-
ation of blue lakes appears in what were previously valleys.

When a rotation is applied to a text prompt that is a homo-
graph, words with the same spelling but different meanings, we
find that the semantic meaning of the image may change. We call
this effect a "semantic shift." In Figure 3, this effect can be seen
with different text prompts and various angles of rotation. When
the prompt "a photo of a crane" is generated with no transforma-
tion applied, Stable Diffusion creates an image of a mechanical

crane used in construction. If the same prompt is used but a rota-
tion with R1, θ = 0.5π is applied, an image of a crane bird is gen-
erated. Similar results occur with the prompts "bass" and "cricket."
For the prompt "a match," we have an image of a matchstick and
an abstract image representing some imagined game: we see four
balls and a person holding a bat. A semantic shift also occurs from
the reflection and inversion operators. This is consistent because a
reflection is similar to a rotation by π and inversion is similar to a
reflection across all dimensions.

We also experiment with applying transformations to only cer-
tain dimensions of the latent vector. When a scalar is added only to
the middle row of the tensor, a green bar appears across the middle
of the image. This suggests that there is a relationship between the
spatial layout of the compressed tensor and the resulting image.
Therefore, it may be possible to apply transformations to only a
specific part of the image, while leaving the rest of the image un-
touched.

5. CONCLUSIONS AND FUTURE WORK

We propose a tool for the creation of music visualization videos us-
ing deep learning. We find that network bending can successfully
be applied to Diffusion Models and shows promise for allowing
continuous, fine-grained control of image generation and the cre-
ation of videos. There is a wide range in the complexity of effects
that different transformations lead to. Some transformations lead
to simple effects such as color filtering or image saturation, yet we
also achieve transformations that are considerably more advanced:
scene changes and semantic shifts. These effects can be produced
through different operators, including inversion, rotation, reflec-
tion, and adding a scalar. These advanced effects are a strong ca-
pability of our system since they are not easily achieved through
standard image editing tools.

Through our experiments, we find some generalities on the
effects of different transforms on the latent space. In general,
increasing or decreasing the value of the latent tensor leads to
changes in color. Increasing, through addition or thresholding, re-
sults in an image with more green in it, and decreasing results in
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(a) prompt: "a floating orb"
inversion, r = 30, layer 0

(b) prompt: "a gorgeous landscape"
add scalar, r = 2, layer 0, applied to 5% of

features

(c) prompt: "mice"
rotation by R1, θ = π, layer 0

Figure 4: Examples of scene change with various prompts. The upper image has no transformation applied.

the image becoming more purple.
Applying transforms to earlier layers, especially before the

first layer, leads to the most dramatic change in the resulting im-
age. This is due to the fact that at later layers in the diffusion
process, the image has been mostly formed. At early layers, there
is still a potential for a significant shift in the image, since it is
still predominantly noise. The scene changes and semantic shifts
we see occur only if the transform is applied at the earliest layers.
Applying certain transformations at the last layer can be useful to
apply a specific visual effect while keeping the coherency of the
original image.

While experimenting with different transformations, we find
that some tensor operations can lead to a "semantic shift" when
the text input is a homograph. This may suggest that concepts
which are linked by the same word are laid out in the latent space
in a relationship that can be accessed through geometric manipu-
lations. The possibility of a geometry of information [31] in the
latent space of Stable Diffusion is extremely preliminary but is an
interesting byproduct of our work and may be a path forward for
gaining more understanding on the latent space of Stable Diffu-
sion. The authors find it interesting that one of the most simple
effects, color filter, and one of the most complex, semantic shift,
are a result of the same operation.

As we noted earlier, the work shown in this paper are the first
steps towards the realization of a system for music visualization.
An important next step is to employ machine-crafted operators in-
stead of hand-picked transforms. One possible approach to this is
to feed the audio into an auto-encoder which outputs a compressed
encoding, which is then applied as an operator on the latent tensor.
We would also like the semantic constraints applied by the user to
be a collection of text, images, or videos. These constraints could
define a subspace of the latent space that is navigated during image
generation. Similarly, the user could provide specific time points
at which each prompt is displayed, and our system could interpo-
late between these prompts, allowing for temporal and narrative
control of the video.

Furthermore, we would like to investigate the semantic shift
that results from certain transforms in order to better understand
the latent space of Stable Diffusion. The invariances of an oper-

ator may define a topology defined by the orbit of the operator.
This could allow one to create connections between disconnected
images through the chaining of operators.

Finally, there is potential for applying network bending to dif-
ferent types of generative networks, not just image networks. Our
methodology could be applied to an audio diffusion model capable
of generating music [32], which would allow the user to have fine-
grain control of the music, perhaps changing timbral, pitch-based,
or rhythmic aspects of the music in a continuous way. We believe
this could be a powerful tool for creative control of text-to-music
models.
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